

Minku Kim

📍 Corvallis, OR, 97330 📩 kimminku@oregonstate.edu 📞 +1 (215)-730-4222
🔗 <https://min-ku.github.io/> 💬 minkukim 💬 min-ku

Education

Oregon State University <i>Ph.D. Candidate in Robotics</i>	<i>Corvallis, OR</i> <i>Sep 2025–Current</i>
University of Pennsylvania <i>M.S. in Mechanical Engineering and Applied Mechanics (4.0/4.0)</i>	<i>Philadelphia, PA</i> <i>Aug 2023–May 2025</i>
◦ Thesis: Learning a Vision-Based Footstep Planner for Hierarchical Walking Control on Unstructured Terrain	

Chung-Ang University <i>B.S. in Mechanical Engineering with honors</i>	<i>Seoul, Korea</i> <i>Mar 2017–Feb 2023</i>
--	---

Research Experience

Dynamic Robotics and Artificial Intelligence Laboratory <i>Graduate Research Assistant-Prof. Alan Fern</i>	<i>Corvallis, OR</i> <i>Aug 2025–Current</i>
--	---

- Working on applying off-policy RL for hybrid offline–online learning with human demonstration data and human-in-the-loop interventions to efficiently train policies for skill learning and sim-to-real transfer

Figueroa Lab, GRASP Lab <i>Graduate Research Assistant-Prof. Nadia Figueroa</i>	<i>Philadelphia, PA</i> <i>Mar 2025–Current</i>
---	--

- Developed a real-time GPU-accelerated system for 6D pose tracking and shape estimation using RGB-D input, combining Active Shape Model (ASM), ADMM optimization, and Stein Variational Gradient Descent (SVGD) for robust performance
- Developed a novel multi-view transformer-based framework for real-time 3D object detection and 6D pose estimation and shape modeling with differentiable rendering from RGB-D inputs

Janus Intelligent Robots Lab, GRASP Lab <i>Graduate Research Assistant-Prof. Antonio Loquercio</i>	<i>Philadelphia, PA</i> <i>Dec 2024–Apr 2025</i>
--	---

- Conducted research on robust sim-to-real transfer using *Isaac-Sim* for end-to-end RL locomotion on the *Unitree Go2* quadrupedal robot and created deployment tools to support real-world experimentation

Dynamic Autonomy and Intelligent Robotics Lab, GRASP Lab <i>Graduate Research Assistant-Prof. Michael Posa</i>	<i>Philadelphia, PA</i> <i>Jan 2024–May 2025</i>
--	---

- Designed a vision-based hierarchical controller for the *Agility Robotics Cassie* bipedal robot, integrating a high-level RL footstep planner with a low-level operational space controller
- Built a full-stack RL pipeline in *Drake* for training, sampling, and hardware deployment, and benchmarked against a vision-based MPC footstep planner, demonstrating improved velocity tracking and success rates across diverse terrains in simulation

Integrated Systems Design Lab <i>Research Intern-Prof. Hae-Jin Choi</i>	<i>Seoul, Korea</i> <i>Aug 2022–Jan 2023</i>
---	---

- Constructed a data acquisition pipeline in MATLAB to collect and analyze real performance data from an electric vehicle (EV) reducer testbed using 3-axis accelerometers and current sensors
- Developed a real-time fault diagnosis model with 98% detection, utilizing feature extraction methods such as Wavelet Packet Decomposition, Mel-Frequency Cepstral Coefficients and STFT spectrogram

Artificial Intelligence for Mechanical Systems Lab <i>Undergraduate Research Assistant-Prof. Woochul Nam</i>	<i>Seoul, Korea</i> <i>Jun 2021–Apr 2022</i>
--	---

- Implemented a hybrid vision-based UAV control system integrating a one-stage detection algorithm and a Siamese network to track moving drones in visually complex environments
- Designed a custom loss function that improved small object detection by 5% and optimized the model using quantization and pruning to achieve 30 fps real-time performance

- Built a terrain recognition algorithm for a wearable device using a stereo camera, employing a point cloud semantic segmentation model for ground classification in dense forest environments

Teaching Experience

ESE 650: Learning in Robotics

Graduate Teaching Assistant-Prof. Pratik Chaudhari

Philadelphia, PA
Jan 2025–May 2025

- Assisted in teaching a course of 120 students, including grading assignments and holding 3hr/week office hours, and creating a SLAM assignment using the KITTI Odometry Dataset

MEAM 510: Design of Mechatronic System

Graduate Teaching Assistant-Prof. Mark Yim, Dr. Jessica Weakly

Philadelphia, PA
Aug 2024–Dec 2024

- Assisted in teaching and managing a course of 100+ students, including leading recitation sessions, grading assignments and holding 3hr+/week office hours

Chung-Ang University Artificial Intelligence Association

Mentor

Seoul, Korea
Apr 2021–Sep 2021

- Mentored 10+ basic track students in Machine Learning, Deep Learning and Computer Vision

Publications

Humanoid Hanoi: Investigating Shared Whole-Body Control for Skill-Based Box Rearrangement

2026

Under review for RSS 2026

Minku Kim[†], Kuan-Chia Chen[†], Aayam Shrestha, Li Fuxin, Stefan Lee and Alan Fern

SAGE: Semantic And Geometric Estimation of 6D Object Pose from Multi-View Observations

2026

Under review for RSS 2026

Minku Kim[†], Ho Jin Choi[†] and Nadia Figueiroa

ASM-6D: Real-Time 6D Object Pose and Shape Estimation via Active Shape Models and ADMM

2026

Under review for RSS 2026

Ho Jin Choi[†], Minku Kim[†] and Nadia Figueiroa

Dynamic-ASM6D: Real-time 6D Object Pose and Shape Estimation via Active Shape Models and ADMM

2025

In Equivariant Systems: Theory and Applications in State Estimation, Artificial Intelligence and Control workshop at RSS 2025

In IEEE-RAS TC Virtual Poster Session and Networking Event 2025

Ho Jin Choi[†], Yi-Hsuan Cheng[†], Minku Kim[†] and Nadia Figueiroa

Learning a Vision-Based Footstep Planner for Hierarchical Walking Control

2025

In IEEE-RAS 24th International Conference on Humanoid Robots (Humanoids) [Oral Presentation]

Minku Kim, Brian Acosta, Pratik Chaudhari and Michael Posa.

Projects

Comparative Analysis of MPC, LQR and RL-Based Footstep Planners in Uneven Terrains

Philadelphia, PA
Mar 2024–May 2024

Team Leader

- Implemented an MLP-based Reinforcement Learning footstep planner and Model Predictive Controller footstep planner and created *Cassie* simulation environment in Drake
- Benchmarked velocity tracking and success rates of RL, LQR and MPC controllers across varied terrain

Optimization-based Estimation of Obstacles from Human Demonstration using Control Lyapunov Function and Control Barrier Functions

Philadelphia, PA
Oct 2023–Dec 2023

Team Member

- Developed and presented a poster on CLF-CBF-QP optimization-based algorithm to estimate obstacle position and size from human demonstrations

- Leveraged Gaussian Mixture Models and Gaussian Mixture Regression to probabilistically learn parameters

Inverse-Kinematics Control for 7-DOF Manipulator

Team Leader

Philadelphia, PA

Oct 2023-Dec 2023

- Created a vision-based pick-and-place algorithm for 7-DOF *Franka Emika Panda* manipulator

- Utilized inverse kinematics with gradient-based optimization and real-time perception feedback to pick and stack static and dynamically moving blocks

Mobile Wheeled-Robot for Autonomous Navigation

Team Leader

Philadelphia, PA

Oct 2023-Dec 2023

- Implemented a PID motor control for a mobile robot using encoders, integrating Vive sensor, infrared (IR) detection circuit, and ToF sensors, with inter-chip communication via I2C protocol

- Achieved localization via Vive system, wall-following, and IR beacon detection for autonomous navigation

Chung-Ang University Artificial Intelligence (CUAI) Association

Team Leader

Seoul, Korea

Oct 2023-Dec 2023

- Created a real-time logo detector and an automatic mosaic algorithm using object detection for Youtube videos, with a web crawling-based data collection pipeline

- Developed a multi-modal algorithm for emotion prediction using video detection, speech and tone recognition

CDIC Competition

Team Member

Seoul, Korea

Oct 2023-Dec 2023

- Developed an AI-based surveillance mobile platform for real-time child safety in daycare centers

- Implemented a multi-modal detection model using real CCTV videos and audio to identify child abuse

X-Corps Research Festival

Team Leader

Seoul, Korea

Oct 2023-Dec 2023

- Designed a mobile application for energy prosumers and a solar-tracking controller to optimize efficiency

- Developed a rooftop solar panel installation algorithm using semantic segmentation with an aerial image api

- Implemented an energy supply and demand, and price prediction model using metadata from KEPCO

Honors and Awards

Oregon State University College of Engineering (COE) Scholarship	<i>2025</i>
Penn Engineering Outstanding Research Award	<i>2025</i>
CUAI 4th Advanced Track Excellent Completion	<i>2022</i>
CAU Winter Conference Da-Vinci Software Institute Excellence Award	<i>2022</i>
CAU Summer Conference Da-Vinci Software Institute Encouragement Award	<i>2021</i>
Academic Excellence Scholarship	<i>2021</i>

Technical Skills

Programming: Python, C/C++, MATLAB/Simulink, Git, Linux

Software/Frameworks: Pytorch, Tensorflow, OpenCV, ROS, LCM, Drake, MuJoCo, Isaac-Sim, Bazel, Docker, SLURM

Robotics: Legged Robot Control, Manipulation Control, Reinforcement Learning, Imitation Learning, Perception, Optimization

Voluntary and Extra-Curricular Activities

Mechanical Engineering and Applied Mechanics Mentorship Program

Mentor

Philadelphia, PA

July 2024-Aug 2024

- Mentored incoming students on research opportunities, coursework, and work-study processes at Penn

Korean Graduate Student Association (KoGSA)

Treasurer

Philadelphia, PA

Oct 2023-May 2025

- Organized 4+ events accommodating 50+ students each and authored grants to secure funding

Republic of Korea Army
Missile Command, 1100 Battalion, Air Defense

Namyangju, Korea
Sep 2018-May 2020

- Served as a squad counselor and leader, completing military service with an honorable discharge